If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-162=0
a = 1; b = 5; c = -162;
Δ = b2-4ac
Δ = 52-4·1·(-162)
Δ = 673
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{673}}{2*1}=\frac{-5-\sqrt{673}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{673}}{2*1}=\frac{-5+\sqrt{673}}{2} $
| 67=(16x-10) | | F(4)=4x+3x-1 | | (N-12)(3n+21)=0 | | 36=3/4y= | | 6^4x=1296 | | -2x+8=-4x-5 | | (w-5)^2=(2w^2)-14w+13 | | w^2-14w=-38 | | −2x=2 | | x/4x+4=2x+10 | | 8^(x-4)=16 | | 20x+1=110 | | |15x+3|=7 | | -2(6x+2)=32 | | -2(6x+2)=32 | | 15x-2+4=7x-3 | | 7-4x=2x+1 | | 4x^2-1x-7=0 | | 441=81+18x | | 3^x=1260 | | -119=1-6(3n-4) | | 4.9+z=-9.00 | | (5x+10)=55 | | x+(xx1)=2 | | -87=-3(3r+8) | | -60x^2-32x+48=0 | | 19=14+t | | 4/10+3/100=x | | 8n^2+336-104=0 | | 8x-7=10x-21 | | 10w^2+31w+15=0 | | 9x^2+1/2x+4/3=2 |